Spectral Enclosures for Non-self-adjoint Discrete Schrödinger Operators
نویسندگان
چکیده
منابع مشابه
Spectral Theory for Compact Self-Adjoint Operators
This agrees with the definition of the spectrum in the matrix case, where the resolvent set comprises all complex numbers that are not eigenvalues. In terms of its spectrum, we will see that a compact operator behaves like a matrix, in the sense that its spectrum is the union of all of its eigenvalues and 0. We begin with the eigenspaces of a compact operator. We start with two lemmas that we w...
متن کاملSpectral Theorem for Self-adjoint Linear Operators
Let V be a finite-dimensional vector space, either real or complex, and equipped with an inner product 〈· , ·〉. Let A : V → V be a linear operator. Recall that the adjoint of A is the linear operator A : V → V characterized by 〈Av, w〉 = 〈v, Aw〉 ∀v, w ∈ V (0.1) A is called self-adjoint (or Hermitian) when A = A. Spectral Theorem. If A is self-adjoint then there is an orthonormal basis (o.n.b.) o...
متن کاملSpectral Theorem for Bounded Self-adjoint Operators
Diagonalization is one of the most important topics one learns in an elementary linear algebra course. Unfortunately, it only works on finite dimensional vector spaces, where linear operators can be represented by finite matrices. Later, one encounters infinite dimensional vector spaces (spaces of sequences, for example), where linear operators can be thought of as ”infinite matrices”. Extendin...
متن کاملNon-variational Approximation of Discrete Eigenvalues of Self-adjoint Operators
We establish sufficiency conditions in order to achieve approximation to discrete eigenvalues of self-adjoint operators in the second-order projection method suggested recently by Levitin and Shargorodsky, [15]. We find explicit estimates for the eigenvalue error and study in detail two concrete model examples. Our results show that, unlike the majority of the standard methods, second-order pro...
متن کاملSpectral Properties of Random Non-self-adjoint Matrices and Operators
We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from self-adjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Integral Equations and Operator Theory
سال: 2019
ISSN: 0378-620X,1420-8989
DOI: 10.1007/s00020-019-2553-z